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Summary

 

Leptin and ghrelin are two hormones that have been recognized to have a major
influence on energy balance. Leptin is a mediator of long-term regulation of energy
balance, suppressing food intake and thereby inducing weight loss. Ghrelin on
the other hand is a fast-acting hormone, seemingly playing a role in meal initia-
tion. As a growing number of people suffer from obesity, understanding the
mechanisms by which various hormones and neurotransmitters have influence on
energy balance has been a subject of intensive research. In obese subjects the
circulating level of the anorexigenic hormone leptin is increased, whereas surpris-
ingly, the level of the orexigenic hormone ghrelin is decreased. It is now estab-
lished that obese patients are leptin-resistant. However, the manner in which both
the leptin and ghrelin systems contribute to the development or maintenance of
obesity is as yet not clear. The purpose of this review is to provide background
information on the leptin and ghrelin hormones, their role in food intake and
body weight in humans, and their mechanism of action. Possible abnormalities
in the leptin and ghrelin systems that may contribute to the development of obesity
will be mentioned. In addition, the potentials of leptin and ghrelin as drug targets
will be discussed. Finally, the influence of the diet on leptin and ghrelin secretion
and functioning will be described.
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Introduction

 

In most humans, body weight is maintained in a stable
condition. Humans can have the same body weight for
many years. To have a constant weight, there must be an
energy balance; energy intake has to be equal to energy
expenditure. However, when the energy balance gets dis-
turbed, this may eventually lead to sustained weight prob-
lems like, for example, in obese subjects. A growing
number of people, including children, suffer from obesity,
particularly in the Western society. In the United States, the
prevalence of obesity is very high. In 1999–2002, 65.1%
of the adults were overweight, of whom 30.4% were obese
(1). In 2002, the prevalence of obesity in Europe ranged
from 9% in Italy to 30% in Greece (2). Morbidity and

mortality increase gradually with excess of body mass
index (BMI) (3). Therefore, many investigators try to iden-
tify the mechanisms behind the imbalance between energy
intake and energy expenditure.

Body weight is regulated by a complex system, includ-
ing both peripheral and central factors. Two of the hor-
mones that seem to play an important role in the
regulation of food intake and body weight are leptin and
ghrelin. Both originate in the periphery and signal
through different pathways to the brain, particularly to
the hypothalamus (4–6). In the hypothalamus, activation
of the leptin or ghrelin receptor initiates different signal-
ling cascades leading to changes in food intake (6,7). As
both the leptin and ghrelin systems are disturbed in obe-
sity, it is important to reveal their mechanism of action
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for the purpose of developing novel therapeutic
interventions.

 

Leptin is a hormone produced mainly by 
adipose tissue

 

In 1994, the human obese (

 

OB

 

) gene and its product leptin
were identified and characterized by Zhang 

 

et al

 

. (8). The

 

OB

 

 gene is located on chromosome 7 (7q31.3) and is
composed of three exons and two introns spanning 18 kb
(9,10). It encodes a protein consisting of 166 amino acids
with a putative signal sequence (11). Only one 

 

OB

 

 mRNA
species has been found in abundance in human adipose
tissues (11). In addition to adipose tissue, leptin is also
produced in small amounts in other human tissues such as
the stomach, mammary epithelium, placenta and heart
(12–16).

Leptin acts through the leptin receptor (

 

LEPR

 

 or 

 

OBR

 

).
The 

 

OBR

 

 gene is located on chromosome 1 (1p31), is
constituted of 18 exons and 17 introns, and encodes a
protein consisting of 1162 amino acids (17,18). One of the
splice variants of the 

 

OBR

 

 gene, the one with the longest
intracellular domain (

 

OB-Rb

 

) and full signalling capabili-
ties, is widely expressed in the human brain (19–21). 

 

OB-
Rb

 

 is highly expressed in the hypothalamus and cerebellum
(20,22). In addition, the leptin receptor is expressed in
other tissues, such as the human vasculature, stomach and
placenta (15,23,24).

Importantly, leptin is released into the circulatory system
by the adipose tissue as a function of the energy stores
(4,25). In 1996, Schwartz 

 

et al

 

. showed that serum and
plasma leptin levels are higher in subjects with a higher
BMI and a higher per cent total body fat (26). In addition,
it was demonstrated that plasma leptin can cross the blood-
brain barrier (BBB), and cerebral spinal fluid (CSF) leptin
levels also turned out to be correlated with BMI. After
release by the adipose tissue, leptin signals to the brain,
giving information about the status of the body energy
stores. In rodents and in humans, this results in a decrease
in food intake and an increase in energy expenditure to
maintain the size of the body fat stores (27–32).

Table 1  gives an overview of several factors that have a
regulatory influence on the circulating leptin levels. For
example, the expression of leptin by adipose tissue is also
influenced by feeding behaviour (25,33–36). Short-term
(12 h) or long-term (2 or 8 weeks) overfeeding results in
an increase in adipocyte leptin expression and circulating
leptin in healthy human subjects (33,36). Furthermore,
circulating leptin levels show a diurnal pattern and are
influenced by gender, age, exercise and glucose uptake
(37–43).

 

Leptin’s role in energy balance is mediated 
through the hypothalamus

 

Leptin has been reported to have influence on various bio-
logical mechanisms, including reproduction (initiation of
human puberty), the immune and inflammatory response,
haematopoiesis, angiogenesis, bone formation, and wound
healing (44–47). Most interestingly, leptin functions as a
feedback mechanism that signals to key regulatory centres
in the brain to inhibit food intake and to regulate body
weight and energy homeostasis. This has been demon-
strated by many studies in rodents (27,28).

Studies in mice and rats have demonstrated that the
hypothalamus is the primary centre for regulation of food
intake and body weight (48–50). After leptin is released by
the adipose tissue into the bloodstream, it crosses the BBB
and binds to the hypothalamic leptin receptors, giving
information about the status of the body energy stores
(6,26,51,52, Fig. 1). By binding to its receptors, leptin
influences the activity of various hypothalamic neurones
and the expression of various orexigenic and anorexigenic
neuropeptides. Orexigenic peptides, which levels are influ-
enced by leptin, include neuropeptide Y (NPY), melanin-
concentrating hormone, agouti-related protein (AgRP),
galanin, orexin and galanin-like peptide (GALP; 48,52–
56). Furthermore, regulation of the effects of ghrelin on
hypothalamic neurones (ghrelin blocks leptin’s action
through the activation of the hypothalamic NPY/Y1 recep-
tor pathway) has been suggested to be one of the important
mechanisms by which leptin may control food intake and
body weight (6,57,58). However, studies on the effects of
leptin on circulating ghrelin levels in humans have pro-
duced conflicting results (59–63). It is therefore still possi-
ble that leptin is not an upstream regulator of ghrelin.

Anorexigenic peptides, which expressions seem to be
modulated by leptin, include pro-opiomelanocortin
(POMC), cocaine- and amphetamine-regulated transcript,
neurotensin, corticotropin-releasing hormone (CRH) and
brain-derived neurotrophic factor (51–53,64,65). The
orexigenic and anorexigenic neurones, which are located in
the various hypothalamic regions (arcuate nucleus [ARC],
lateral hypothalamus, perifornical hypothalamus and
paraventricular nucleus), interact with each other (66–68).

 

Table 1

 

Regulators of circulating leptin levels

Effect on circulating leptin

Energy stores (4,25)

 

↑

 

 With increase in body mass index and per
cent total body fat

Food intake (25,33–36)

 

↑

 

Gender (38–40) Higher in females compared with males
Age (40)

 

↓

 

 With increasing age
Exercise (41,42)

 

↓

 

Glucose uptake (43)

 

↑

 

The release of leptin by adipose tissue is influenced by various factors.
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Compromise in interactions between orexigenic peptides or
in their effects on anorexigenic peptides has been suggested
to be one of the possible mechanisms of leptin action in the
hypothalamus (6).

 

Leptin induces weight loss by suppression of 
food intake and by stimulation of metabolic rate

 

Montague 

 

et al

 

. provided the first genetic evidence that
leptin is an important regulator of energy balance in
humans (69). The investigators studied two severely obese
children. Congenital leptin deficiency, due to a homozygous
frameshift mutation in the 

 

OB

 

 gene, was found to be
associated with normal birth weight, followed by a rapid
development of severe obesity associated with hyperphagia
(over-eating) and impaired satiety. Farooqi 

 

et al

 

. examined
subjects who were heterozygous for the same frameshift
mutation (30). Serum leptin concentrations were lower

compared with controls and were accompanied by an
increased prevalence of obesity. Leptin treatment results in
decreased appetite, weight loss, increased physical activity,
changes in endocrine function and metabolism, and bene-
ficial effects on ingestive and noningestive behaviour in
leptin-deficient patients (30,32). Furthermore, Weigle 

 

et al

 

.
showed that leptin seems to contribute to ongoing weight
loss after 12 weeks of dietary fat restriction in healthy
humans (70). The effect of leptin on energy expenditure in
humans is less clear. Several investigators showed that cir-
culating leptin is not correlated with metabolism in lean or
obese subjects (36,39,71,72). On the other hand, Jorgensen

 

et al

 

. showed that the serum leptin level is a strong positive
determinant of resting metabolic rate (RMR) in healthy
men (29). In addition, Jeon 

 

et al

 

. and Kennedy 

 

et al

 

. also
found a correlation between serum or plasma leptin levels
and RMR (31,39).

Until several years ago, leptin had been thought only to
play a significant role in long-term regulation of energy

 

Figure 1

 

Pathways by which leptin and ghrelin 
may have effect on energy balance in humans. 
This schematic drawing shows the pathways by 
which leptin and ghrelin may reach the hypothal-
amus, in order to have an effect on food intake 
and body weight. Leptin is secreted by adipose 
tissue and ghrelin is secreted by the stomach. 
Both hormones may enter the brain through the 
bloodstream (long arrow with straight line). In 
addition, ghrelin and gastric leptin may reach 
the hypothalamus through the vagal nerve and 
nucleus tractus solitarus (short arrows with 
straight line). In addition, central ghrelin may 
affect the energy centre in the hypothalamus 
(curved arrow). Leptin and ghrelin both stimulate 
(

 

+

 

) and suppress (–) hypothalamic neurones 
containing various neuropeptides, resulting in 
anorexic or orexic effects on energy balance 
(open arrows). Studies on the effect of leptin on 
circulating ghrelin levels produced conflicting 
results; whether ghrelin has influence on circu-
lating leptin levels has not yet been demon-
strated (curved arrows with dashed line). AgRP, 
agouti-related protein; BDNF, brain-derived neu-
rotrophic factor; CART, cocaine- and amphet-
amine-regulated transcript; CRH, corticotropin-
releasing hormone; GALP, galanin-like peptide; 
MCH, melanin-concentrating hormone; NPY, 
neuropeptide Y; NT, neurotensin; POMC, pro-
opiomelanocortin (6,14,30,32,47,48,51–
58,64,65,68,75,84,85,89,103,109-112,116-119).
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balance. More recent data indicate that leptin also seems
to play a role in short-term regulation of food intake and
body weight. Leptin is produced not only by adipose tissue,
but also in small amount by the stomach (15). Therefore,
it has been suggested that leptin might play a role in the
control of meal size in cooperation with other satiety pep-
tides (73–75). It has been shown that several intestinal
peptides induce gastric leptin release (15,75). In addition,
gastric leptin secretion is stimulated by the administration
of insulin, which is a hormone released into the bloodstream
shortly after food intake (76). Furthermore, high-fat meals
and mixed meals lower 24-h circulating leptin levels
(77,78). It is, however, possible that gastric leptin serves
more as a local stimulus, for example, by playing a role in
food digestion and absorption in the intestines (15,74,75).
Additional studies are necessary to confirm this hypothesis.

For a long time, many investigators focused their atten-
tion on the role of leptin in the pathogenesis of obesity.
However, several years ago, many researchers started to
realize that leptin might be more importantly involved in
adaptation to energy deprivation. Fasting for 36 h (or
3 days) has been shown to result in a significant decrease
in plasma leptin concentration (25,34). This decline in
plasma leptin was much greater than the change in adipose
mass, indicating that this change in adipose mass is not
solely responsible for the decrease in circulating leptin con-
centration. Several studies have demonstrated that leptin is
involved in the neuroendocrine response to starvation,
including changes in hormone concentrations, and possibly
changes in sympathetic nervous system activity and
reproductive function (79,80). Disease states like exercise-
induced amenorrhoea and anorexia nervosa are also asso-
ciated with low leptin concentrations and show similar
changes in neuroendocrine functioning (81). Importantly,
many of the neuroendocrine alterations that occur during
fasting are blunted in obese individuals (79,82).

 

Ghrelin is a hormone secreted by the stomach

 

The gene coding for human prepro-ghrelin, 

 

GHRL

 

, is
located on chromosome 3 (3p25-26) and is composed of
four exons and three introns spanning 5 kb (83,84).
Human prepro-ghrelin consists of 117 amino acids, and the
mature ghrelin peptide is constituted of 28 amino acids
with a fatty acid chain modification (octanoyl group) on
the third amino acid (85). Ghrelin peptide was originally
isolated from the stomach, but ghrelin protein has also
been identified in other peripheral tissues, such as the gas-
trointestinal tract, pancreas, ovary and adrenal cortex (85–
89). In the brain, ghrelin-producing neurones have been
identified in the pituitary, in the hypothalamic ARC, and
in a group of neurones adjacent to the third ventricle
between the dorsal, ventral, paraventricular and arcuate
hypothalamic nuclei (68,85,90).

Ghrelin binds to the growth hormone secretagogue
receptor (GHS-R). By nucleotide sequence analysis
Howard 

 

et al

 

. identified two types of cDNA encoding for
the GHS-R, which were derived from the same gene and
were referred to as GHS-R1a and GHS-R1b (91,92). The
gene encoding for the human GHS-R1 receptor is located
on chromosome 3 (3q26.2) and is constituted of two exons
and one intron spanning 4 kb (84,92,93). The GHS-R1a
receptor is constituted of 366 amino acids. As to the GHS-
R1b variant, it is not clear whether it is transcribed into
protein 

 

in vivo

 

, but theoretically it would code for 289
amino acids (92). The GHS-R1 receptor was originally
cloned from the human pituitary and arcuate ventro-medial
and infundibular hypothalamus (91). In addition, GHS-R1
receptors have been identified in other human tissues, such
as the gastrointestinal tract, ovary and testis (94–96).

The secretion of ghrelin by the stomach depends largely
on the nutritional state. Ghrelin levels show preprandial
increases and postprandial decreases (59,97,98). In addi-
tion, ghrelin levels show a diurnal variation and seem to
be influenced by age, gender, BMI, growth hormone (GH),
glucose and insulin (Table 2; 59,63,97,99–105). However,
several of these correlations could not be confirmed
(100,106). Notably, leptin has also been suggested to have
influence on circulating ghrelin levels. It has been hypoth-
esized that the satiety-inducing effects of leptin include the
suppression of ghrelin secretion (107). Indeed, the effects
of leptin on energy homeostasis are opposite (although not
complementary) to those of ghrelin; leptin induces weight
loss by suppression of food intake, whereas ghrelin func-
tions as an appetite-stimulatory signal. Moreover, leptin
has been shown to be an upstream regulator of ghrelin in
rodents (57,84,108). However, several studies in humans
have produced conflicting results. For example, Tschop

 

et al

 

. demonstrated that in obese patients fasting plasma
ghrelin levels are negatively correlated with fasting plasma
leptin levels (60). However, in another study fasting
plasma leptin and ghrelin concentrations were not corre-
lated in obese children and adolescents (61). In addition,
intermeal ghrelin levels are displaying a diurnal rhythm

 

Table 2

 

Regulators of circulating ghrelin

Effect on circulating ghrelin

Food intake (59,97,98)

 

↓

 

Age (99)

 

↓

 

 With increasing age
Gender (63,100) Higher in females compared with males
BMI (97,101,102)

 

↓

 

 With increasing BMI
GH (103)

 

↓

 

Glucose (104)

 

↓

 

Insulin (105)

 

↓

 

The release of ghrelin by the stomach is influenced by various factors.
BMI, body mass index; GH, growth hormone.
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that is in phase with that of leptin in healthy humans (59).
Furthermore, a recent study showed that leptin administra-
tion to healthy volunteers does not regulate ghrelin levels
over several hours to a few days (63). These results suggest
that leptin does not regulate circulating ghrelin levels. It is
therefore possible that the leptin and ghrelin systems func-
tion independently of each other in the control of energy
homeostasis.

 

The role of ghrelin in food intake is mediated 
through the hypothalamus

 

The effects of ghrelin on energy balance are at least in a
large part mediated by the hypothalamus. Korbonits 

 

et al

 

.
proposed three different pathways for the appetite-
inducing effects of ghrelin (103). First, after release into the
bloodstream by the stomach, ghrelin may cross the BBB
and bind to its receptors in the hypothalamus
(89,103,109). Second, ghrelin may reach the brain through
the vagal nerve and nucleus tractus solitarus (84,103).
Third, ghrelin is produced locally in the hypothalamus,
where it may directly affect the various hypothalamic
nuclei (68,103).

Ghrelin attenuates leptin-induced reduction in food
intake and body weight by modulating the expression of
various hypothalamic peptides. Ghrelin stimulates the
activity of neurones expressing NPY, AgRP and orexin
(57,110,111). On the other hand, ghrelin has an inhibi-
tory effect on POMC neurones and CRH-producing neu-
rones (68). Ghrelin does not seem to be a direct regulator
of leptin, as fasting produces identical decreases in serum
leptin in ghrelin null and wild-type mice (112). The
results gathered so far indicate that leptin and ghrelin
have different effects on the hypothalamic neurones pro-
ducing the various orexigenic and anorexigenic peptides,
resulting in more or less opposing effects on energy bal-
ance (Fig. 1).

 

Ghrelin presumably functions as an 
appetite-stimulatory signal

 

Ghrelin has been shown to regulate the secretion of GH by
the pituitary (85). In addition, ghrelin has effect on the
gastrointestinal tract, immune cell activation and inflam-
mation (113,114). Interestingly, in 2000, Tschop 

 

et al

 

.
reported that ghrelin seemed to be involved in the regula-
tion of food intake and energy balance in mice and rats
(115). Based on the results, it was postulated that ghrelin
signals to the hypothalamus when an increase in metabolic
efficiency is necessary.

It has been demonstrated that the preprandial increase
in ghrelin levels correlates with hunger scores in healthy
humans, initiating meals voluntarily in the absence of time-
and food-related cues (116). In addition, an intravenous

injection or infusion of ghrelin also induces hunger and
food intake among healthy and obese humans (117–119).
Together, this indicates that ghrelin seems to function as a
meal-initiation signal in the system for short-term regula-
tion of energy balance. Based on results of studies with
mice, Asakawa 

 

et al

 

. postulated that this increase in food
intake after ghrelin administration is mediated through its
stimulatory effect on gastric emptying (120). This might
also be the case in humans, as it has been demonstrated
that circulating ghrelin levels are correlated with gastric
emptying in human subjects (121). Whether ghrelin also
has an influence on the regulation of energy expenditure is
not clear. It has been reported that rodents show decreased
energy expenditure after peripheral administration of ghre-
lin (115). However, this has not yet been demonstrated in
humans.

Besides playing a role in short-term regulation of food
intake, ghrelin might also play a role in long-term regula-
tion of energy balance. Peripheral daily administration of
ghrelin induces adiposity in rodents by reducing fat utiliza-
tion (115). In addition, circulating ghrelin concentrations
are negatively correlated with BMI in humans, and these
levels increase when obese humans lose weight, and
decrease when anorexia nervosa patients gain weight. This
suggests that ghrelin levels change in response to dieting to
maintain body weight (101,102). Also in Prader–Willi syn-
drome, which is a syndrome resulting from a genetic defect
and among other things is characterized by insatiable appe-
tite and obesity, plasma ghrelin concentrations are higher
compared with healthy subjects (122). Again, these ghrelin
concentrations are negatively correlated with BMI. Fur-
thermore, plasma ghrelin levels decrease after gastrectomy,
which most likely contributes to the weight-reducing effect
of this procedure (97). However, this might also be due to
alterations in other gut peptides involved in regulation of
appetite.

Finally, ghrelin does not seem to be crucial for the main-
tenance of energy homeostasis. Ghrelin knockout mice
(

 

ghrelin

 

–/–

 

) have a normal body size, body composition,
bone density, growth rate, gastric emptying, food intake,
reproduction, gross behaviour and tissue pathology
(112,123). Fasting results in normal decreases in serum
insulin and leptin, and ghrelin administration stimulates
appetite in 

 

ghrelin

 

–/–

 

 mice. Moreover, 

 

Ghsr

 

-null mice have
a normal appetite, show a normal body size, body compo-
sition, body weight and bone density, and show normal
serum leptin and insulin responses to fasting (124). How-
ever, body weights of mature 

 

Ghsr

 

-null mice were modestly
reduced, which might be related to ghrelin’s role in GH
release, resulting in subtle changes in body composition.
Together this indicates that ghrelin is not critically required
for growth, appetite and fat deposition, and is not likely to
be a direct regulator of leptin and insulin. It was suggested
that other redundant appetite-inducing agents might com-
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pensate for loss of ghrelin functioning. Instead, De Smet

 

et al

 

. showed that in old mice ghrelin is a mediator of meal
initiation triggered by the light/dark cycle, and in young
animals ghrelin was suggested to be possibly involved in
the selection of energy stores and in the partitioning of
metabolizable energy into storage or dissipation as heat
(123).

 

Do abnormalities in leptin and ghrelin or their 
actions contribute to the development or 
maintenance of obesity?

 

Although it would be expected that in obese humans lep-
tin levels are decreased and ghrelin levels are increased,
circulating leptin levels turned out to be increased and
circulating ghrelin levels showed to be decreased (60,125–
127). In addition, obese humans show a disturbed diurnal
variation in leptin and ghrelin levels (107). It is still not
clear if these abnormalities in the leptin and ghrelin sys-
tems are the cause or a consequence of obesity. Although
several investigators were able to attribute obesity to poly-
morphisms in the genes encoding for leptin, ghrelin and
their receptors, it seems that defects in these genes are
generally not involved in obesity in humans
(22,83,126,128–135).

As obese humans show elevated levels of leptin in serum
and adipocytes, and show limited effects with leptin treat-
ment, many researchers suggest obese humans to be leptin-
resistant (22,26,127,136–138). The development of leptin
resistance most likely involves a period of over-eating,
resulting in the leptin system getting so disturbed that it
leads to sustained defects. Over-eating results in an increase
in circulating leptin levels (33,36). This exposure of the
hypothalamus to high leptin levels may have damaging
effects on the hypothalamus. As a result, the hypothalamus
becomes less sensitive to leptin, leading to a sustained
increase in leptin levels. It has already been shown that
chronic leptin infusion leads to leptin resistance in a rat
model (139). In addition, Kolaczynski 

 

et al

 

. showed that
humans develop leptin resistance because of overfeeding
(33).

It has been postulated that leptin resistance might be due
to defective leptin transport across the BBB. Several studies
support this hypothesis (26,127,140). It has been shown
that diet-induced obese (DIO) mice develop resistance to
peripherally administered leptin, while retaining sensitivity
to centrally administered leptin (140). This suggests that
these mice have disturbed leptin transport through the BBB.
In humans, the ratio between leptin levels in CSF and
plasma has been shown to be lower in obese subjects com-
pared with lean individuals (26,127). This suggests that
leptin enters the brain by a saturable transport system and
that the capacity of leptin transport is lower in obese indi-
viduals, thereby providing a mechanism for leptin resis-

tance. However, Levin 

 

et al

 

. demonstrated that BBB leptin
transport was not different between preobese DIO and
diet-resistant rats, and impaired leptin transport developed
only after DIO rats became obese and/or aged (141). Thus,
defects in leptin transport appear to be an acquired defect
associated with the development of obesity. In addition,
preobese DIO rats had reduced leptin receptor mRNA
expression in the ARC, in association with reduced leptin-
induced anorexia after peripheral leptin administration.
The investigators suggested that a pre-existing reduction in
hypothalamic leptin signalling might contribute to the
development of diet-induced obesity when dietary fat and
calorie intake are increased.

One other possibility is that a defect in leptin receptor
expression in the hypothalamus is the cause of altered
leptin sensitivity. Hypothalamic leptin receptor mRNA lev-
els are decreased in DIO rats (141). In addition, in obese

 

db/db

 

 and 

 

ob/ob

 

 mice, 

 

OB-Rb

 

 mRNA levels in the ARC
are increased (142). Furthermore, leptin administration
reduces 

 

OB-Rb

 

 mRNA levels in the ARC of 

 

ob/ob

 

 mice,
and fasting increases 

 

OB-Rb

 

 mRNA levels in the ARC of
normal mice. The investigators proposed that hypotha-
lamic 

 

OB-Rb

 

 expression might be sensitive to genetic and
physiological interventions that alter circulating leptin lev-
els, and that overexpression of the leptin receptor in the
hypothalamus might contribute to increased leptin sensitiv-
ity (142). However, it is important to note that in 1996
Considine 

 

et al

 

. did not find a difference in the amount of
leptin receptor mRNA between lean and obese humans
(22). Therefore, this concept needs further investigation.

It is also possible that leptin resistance is caused by
defects in the downstream mediators of leptin. Based on
studies with mice, AgRP and its receptor (Mc4r) have been
proposed to be good candidates for human disorders of
body weight regulation (143). In addition, changes in gene
expression in NPY/AgRP neurones and also POMC neu-
rones have been demonstrated in various animal studies
(6). Also, defects in the signalling pathways downstream of
the leptin receptor might play a role in reduced leptin
response in the hypothalamus. The janus kinase-signal
transducer and activator of transcription (JAK-STAT) path-
way is one of the major pathways of leptin signal transduc-
tion (21,144). El-Haschimi 

 

et al

 

. demonstrated in studies
with DIO mice that peripheral administered leptin was
unable to activate hypothalamic Stat3 signalling, and the
magnitude of Stat3 activation was substantially reduced
after intracerebroventricular leptin (145). Several inves-
tigators have reported the negative regulators of leptin
signalling (protein tyrosine phosphatase 1B [PTP1B]; SH2-
containing phosphatase 2; suppressor of cytokine signalling
3 [SOCS3]) to be potential factors in leptin resistance (146–
148). SOCS3 mRNA expression in the hypothalamus is
induced by leptin (146). It mediates negative feedback on
JAK-STAT activation. Excessive SOCS3 activity might
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therefore be involved in leptin resistance. Indeed, in 2004,
Howard 

 

et al

 

. demonstrated that mice with heterozygous

 

SOCS3

 

 (

 

SOCS3

 

+

 

/–

 

) deficiency display greater leptin sensi-
tivity than wild-type mice; they showed enhanced weight
loss and increased hypothalamic leptin receptor signalling
after leptin administration (149). In addition, 

 

SOCS3

 

+

 

/–

 

mice seemed to be protected against the development of
diet-induced obesity. Thus, the level of SOCS3 expression
seems to be a determinant of leptin sensitivity and suscep-
tibility for obesity.

Whether an elevated level of circulating leptin causes a
reduction in ghrelin levels is still not clear. However, it
seems that leptin does not have a direct influence on ghrelin
levels. It is possible that decreased plasma ghrelin concen-
trations represent a physiological adaptation to the positive
energy balance associated with obesity (60). This is in line
with the observation that circulating ghrelin levels in obese
patients increase during weight loss (102). Obese humans
do not lose their responsiveness to ghrelin, or have a defect
in ghrelin transport at the BBB, as peripheral administra-
tion still results in an enhanced appetite in obese subjects
(118). It may be that obese patients are oversensitive to
ghrelin, for example, because of an overexpression of the
GHS-R. It has been shown that a low-dose infusion of
ghrelin has no effect in lean people, but does increase 

 

ad
libitum

 

 energy intake in obese subjects (150). In addition,
a high-dose infusion with ghrelin led to a higher increase
in food intake in obese patients compared with lean sub-
jects. However, in mice it has been shown that constitutive
overexpression of GHS-R does not affect food intake and
adipose tissue response to GHS ligands (151).

Finally, in recent studies conducted by Asakawa 

 

et al

 

.
and Zhang 

 

et al

 

., it was demonstrated that desacyl ghrelin
and obestatin (which are peptides derived from the same
ghrelin gene, that undergo differential post-translational
modifications) also play a role in energy balance (120,152).
The investigators showed that treatment of rodents with
desacyl ghrelin or obestatin induced a negative energy bal-
ance by decreasing food intake and delaying gastric emp-
tying, and by decreasing body weight gain. Thus, ghrelin
on one hand and desacyl ghrelin and obestatin on the other
hand seem to have opposing effects on weight regulation.
It might be that dysfunctioning of desacyl ghrelin or obesta-
tin is involved in the pathophysiology of obesity. For exam-
ple, disturbed post-translational processing of the 

 

GHRL

 

gene and therefore decreased expression of desacyl ghrelin
and obestatin may result in increased food intake and body
weight.

 

The potential of leptin and ghrelin as a drug 
target for weight regulation

 

Many studies have been performed to investigate the poten-
tial of both leptin and ghrelin as therapeutic targets. Unfor-

tunately, although leptin treatment has been shown to have
beneficial effects in patients with leptin deficiency, it shows
very limited effects in obese people (136–138). Therefore,
several investigators try to find alternatives for the normal
leptin hormone and to develop strategies that bypass nor-
mal central leptin functioning. In a recent study, Lo 

 

et al.
introduced a superior form of leptin, having enhanced
pharmacological properties in comparison with recombi-
nant leptin that has been used in former clinical trials (153).
The Fc-leptin immunofusins (consisting of the Fc fragment
of an immunoglobulin gamma chain followed by leptin) led
to a significant weight loss in non-leptin-deficient mice. In
addition, Fc-leptin had an extended circulating half-life.
This makes Fc-leptin an interesting compound for the treat-
ment of non-leptin-deficient obese humans. In 2003, Weigle
et al. showed that leptin contributes to ongoing weight loss
after 12 weeks of dietary fat restriction in healthy humans
(70). Moreover, in a recent study, Rosenbaum et al. showed
that daily administration of leptin, in addition to a diet,
could prevent adaptations normally occurring during
weight loss (154).

Also the potential of the ghrelin system as a therapeutic
target for obesity treatment is still under discussion. As
it has been demonstrated that circulating ghrelin levels
increase when obese humans lose weight, and because
obese mice show an increase in sensitivity to ghrelin upon
weight loss, blockage of ghrelin could prevent weight
regain after weight loss (155). In a recent study with rats,
it was demonstrated that anti-ghrelin blocks ghrelin-
induced increase in food intake after ghrelin injection
(156). In addition, the ghrelin receptor constitutes a poten-
tial drug target. The GHS-receptor has been shown to be
constitutively active (157). Blocking this constitutive recep-
tor activity was suggested to possibly lower the set point
for hunger between meals. It has already been demon-
strated that GHS-R antagonists result in a decrease of
energy intake in lean and obese mice, and repeated admin-
istration gave a decrease of body weight gain in ob/ob mice
(158). However, as it is possible that the ghrelin system
functions differently in humans, similar studies in human
subjects are still necessary. Notably, in another study, a
novel GHS-R1a antagonist was discovered, which blocks
ghrelin-induced GH release in the medial arcuate nucleus,
but like ghrelin induces increased body weight gain through
the dorsal medial hypothalamus (159). The investigators
suggested that the role of ghrelin in weight gain might be
mediated by a novel receptor other than GHS-R1a. There-
fore, GHS-R1a might not be a potential target to block
ghrelin-induced food intake.

One other strategy is to target genes that are involved in
leptin or ghrelin functioning, for example, negative regula-
tors of leptin or ghrelin signalling. Howard et al. proposed
SOCS3, which has been identified as a leptin-induced neg-
ative regulator of leptin receptor signalling and potential
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mediator of leptin resistance, to be a potential target for
therapeutic intervention (149). In addition, PTP1B has
been suggested to be a valuable target for the treatment of
leptin resistance in human obesity (160). Likewise, the use
of agents that stimulate inhibitors of ghrelin signalling may
be a potential way to suppress ghrelin’s stimulatory effect
on food intake and body weight.

Can the diet be modulated to stimulate the 
secretion or enhance the action of leptin and 
ghrelin?

Food intake can have significant effects on circulating lep-
tin and ghrelin levels. Overfeeding results in an increase in
adipocyte leptin expression and circulating leptin in healthy
human subjects (33,36). Fasting (for 20 or 36 h or 3 days)
results in a decrease of adipocyte leptin mRNA and serum
leptin levels, with a greater decline in leptin levels in lean
subjects than in obese subjects (25,34,35). Refeeding is
again associated with a rise in serum leptin levels, and
leptin levels return to baseline after 24 h (25,34). On the
other hand, fasting results in an increase in plasma ghrelin
levels, with a nearly twofold increase immediately before
each meal (59,97). This preprandial increase in ghrelin
levels correlates with hunger scores in humans (116). Feed-
ing results in a decrease in plasma ghrelin levels within 1
to 2 h (59,98).

Not only the size and frequency of meals have an effect
on circulating leptin and ghrelin levels, but also the com-
position of a meal is a determinant of leptin and ghrelin
levels in humans (Table 3). For example, low-fat/high-
carbohydrate meals result in an increase in circulating lep-
tin concentrations, which is larger, compared with high-fat/
low-carbohydrate meals (161). In addition, high-fat meals
lower 24-h circulating leptin levels relative to high-
carbohydrate meals (78). Hydrolysed guar fibre or protein
intake does not seem to have influence on circulating leptin
concentrations (162,163).

A low-fat diet seems to have an inhibitory effect on
ghrelin levels, as one study reported that a low-fat/high-

carbohydrate diet resulted in weight loss, without an
increase in plasma ghrelin levels (70). Another study dem-
onstrated that a high-carbohydrate diet caused a larger
drop in ghrelin levels than a high-fat diet in healthy women
(164). The effect of protein ingestion on ghrelin levels gives
conflicting results (163,165,166). Finally, the use of non-
caloric Psyllian fibres results in a decrease of plasma ghrelin
levels in healthy women (167). Together, these data indicate
that for obese subjects it is important to follow a specific
diet in order to regulate food intake and body weight.

Conclusion

What becomes clear from this review is that both leptin
and ghrelin play major roles in the control system for
energy balance in humans. However, leptin is primarily
involved in long-term regulation of energy balance; it is
released into the circulatory system as a function of energy
stores, whereas ghrelin is a fast-acting hormone, of which
the circulatory levels show clear meal-related changes.
One other difference is that, in contrast to leptin, ghrelin
does not seem to be critical for normal appetite and
growth. Interestingly, leptin and ghrelin functioning in the
system for energy homeostasis involves several overlap-
ping pathways. At present, it is still not clear whether
abnormalities in the leptin or ghrelin systems contribute to
the development of obesity. Nevertheless, disturbances in
both systems seem to play a role in the maintenance of
obesity.

Most importantly, obese patients are leptin-resistant, and
it is therefore necessary to develop a treatment that over-
comes leptin insensitivity or bypasses normal central leptin
functioning, for example, by developing novel forms of
leptin with stronger physiological properties. The Fc-leptin
immunofusins used by Lo et al. were shown to have posi-
tive effects on body weight in mice (153). Additional stud-
ies are warranted to assess the effects of these compounds
in humans. Also, ghrelin is still recognized as a potential
drug target for weight regulation. When obese patients lose
weight, ghrelin levels show an increase, as if to compensate

Table 3 Effects of diet composition on circulating leptin and ghrelin levels

Diet Effect on circulating leptin Effect on circulating ghrelin

High-fat 24-h circulating leptin levels ↓ relative to high-carbohydrate
meal (78)

↓ (164)

High-carbohydrate ↓ (Larger drop compared with high-fat diet, 164)
Low-fat/high-carbohydrate ↑(Larger compared with high-fat/low-carbohydrate meal, 146) No increase (70)
High-fat/low-carbohydrate ↑ (146)
Protein No effect (148) Conflicting results (163,165,166)
Hydrolysed guar fibre No effect (147)
Non-caloric Psyllian fibres ↓ (167)

The composition of a diet can have increasing or decreasing effect on circulating leptin and ghrelin levels.
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for this weight loss (155). Therefore, it seems interesting to
try ghrelin antagonists while following a strict diet.

Furthermore, the peptides downstream of leptin and
ghrelin constitute possible targets for therapeutic inter-
ventions. For example, Makimura et al. demonstrated
that a reduction of hypothalamic AgRP results in an
increase of metabolic rate and a decrease of body
weight without affecting food intake in mice. This sug-
gests that agents antagonizing the effect of AgRP may
be a useful strategy to treat obesity, without producing
unacceptable loss of appetite (168). Interestingly,
Belsham et al. created a number of hypothalamic neu-
ronal cell lines, which can be used as models to study
the regulation of neuropeptides associated with the con-
trol of feeding behaviour. Eventually, such studies may
provide information that is necessary for the design of
anti-obesity agents (169).

As diet and exercise have significant effects on energy
homeostasis, the use of solely therapeutic drugs to treat
obesity does not seem to be sufficient. Orzano and Scott
already showed that the most effective treatment is pro-
vided by a combination of diet and exercise (3). Taken
together, the best strategy to accomplish long-term changes
in body weight seems to be the use of potential anti-obesity
agents in combination with a low-fat diet and sufficient
exercise.
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